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Comparing groups on the basis of survival is common in
medical research. Survival time data require methods that prop-
erly account for the situation when the time of death is not
observed because some subjects are still alive at the end of the
study (censoring). In addition, methods are required that make
no assumptions about the shape of the survival time distribution
(nonparametric). There are widely used methods for statistical
comparison and graphic display of survival of two samples. The
log-rank test (1) provides a comparison of the observed number
of deaths in each group versus the number that would be ex-
pected if the total mortality were distributed according to the
proportion in each group. These statistical comparisons are often
accompanied by Kaplan–Meier curves that provide a graphic
display of the distribution of survivorship over time (2). This
estimator, calculated from samples that are partially censored, is
a monotonically non-increasing step function with steps at each
observed death time. Although calculated separately for each
group, these graphs are displayed simultaneously in a single plot
to promote a visual comparison of survival over the entire study
period.

It is often of interest to compare the survival of a single
sample to that of a defined reference population. For example,
when a series of patients with a rare, life-threatening disease has
been collected, it may be of interest to know if the study sample
is experiencing the same survival as the demographically
matched standard (general) population, according to actuarial
tables. This is especially of interest when the disease is curable
or not usually lethal and the age of onset is late in life. It is not
appropriate to use methods developed for two-sample compari-
sons to do this analysis, because the variance would be incor-
rectly calculated and thus the P value would be invalid.

It is possible to provide a single summary measure of the
relative survival of a sample compared with a standard popula-
tion by estimating the standardized mortality ratio (3). However,
investigators often want to report a P value from a statistical test
that compares the two populations—essentially a one-sample
log-rank test. Although such tests are published in the statistical
literature (4,5), medical investigators do not generally read this
literature, and thus these tests are not widely known and used by
this community. In fact, these articles (4,5) have been cited
fewer than 10 times in the medical literature over the past 20
years.

Some ad hoc methods have been devised for a one-sample
survival test. For example, one approach is to use the actuarial
tables to determine the expected remaining lifetime at the age of
study entry for each of the subjects in the sample and then to
treat these times as exact death times of a hypothetical sample of
the same number of subjects from the reference population. It is
possible then to calculate a two-sample log-rank test and report
the resulting P value. However, this test is inappropriate because

the variance would be incorrectly calculated and thus the P value
would be invalid.

Similar pitfalls arise in trying to obtain an accompanying
graphical display that would appropriately represent the survival
of the standard population in the same manner in which the
Kaplan–Meier plot represents the sample. Because there are no
methods that are widely cited in the medical literature, there is a
tendency to develop ad hoc methods. For example, one approach
is to calculate the expected remaining lifetime for each subject in
the sample by using the actuarial tables matched by age, sex,
and/or race. This set of numbers is then treated as exact observed
death times, and the Kaplan–Meier estimator is calculated for
this hypothetical population. This calculation results in a step
function with the number of steps equal to the size of the sample
being studied. This is not correct. As an illustration, suppose
everyone in the sample began observation at the same age and,
thus, would have the same expected remaining lifetime, say s.
The survival distribution for the hypothetical matched sample
representing the reference group would then have a value of 1
until s, at which point the curve would drop to 0. The correct
method must use the entire remaining survival curve (calculated
from the reference actuarial tables) for each subject.

The purpose of this commentary is to describe both the simple
one-sample log-rank test that is equivalent to the standardized
mortality ratio and an estimate for survivorship in the matched
standard population that allows a visual comparison of survivor-
ship of the sample and standard populations. We will discuss the
issues in designing a study that will rely on one-sample methods.
The software to perform analyses discussed in this commentary
can be found at our Web site: http://biostatistics.mgh.harvard.
edu/biostatistics/resources.html (6). As an illustration, we use
these methods to compare the survival of a small cohort of
patients diagnosed with extra-mammary Paget’s disease at Mas-
sachusetts General Hospital with the survival of the general
population (7).

ONE-SAMPLE LOG-RANK TEST

The data from our sample consist of intervals of time during
which subjects were under observation. Using the example of
the series of patients treated for extra-mammary Paget’s disease,
we determine the age at diagnosis and the age at which vital
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status was last confirmed (either at death or at most recent visit)
for each patient. From this sample, we know the observed num-
ber of patients who have died, which we call O, and wish to
compare this number with the number of deaths that would be
expected in a comparison (standard) population with the same
distribution of age and length of follow-up.

To obtain the expected number of deaths, E, for a standard
population with the same demographic profile (race/sex) and
length of follow-up, it is necessary to calculate the probability of
observing a death during the same follow-up period as was
available for our sample of subjects. For this calculation, it is
necessary to obtain the annual death rate for each year of age
during follow-up. The standardized (actuarial) tables in the Na-
tional Vital Statistics Reports (8) provide these death rates clas-
sified by age, sex, and race. For simplicity, it is useful to apply
the convention that both the diagnosis and end of follow-up
occurred on a patient’s birthday. Spreadsheet software can be
used to facilitate the calculation of the expected number of
deaths. Table 1 illustrates this calculation on a small sample of
subjects similar to those in the extra-mammary Paget’s disease
dataset: two Caucasian females (patients 2 and 3), diagnosed at
ages 74 and 78 years who lived until ages 80 and 84 years,
respectively; a Caucasian male (patient 1), diagnosed at age 72
years and followed until age 89 years; and a Caucasian female
(patient 4), diagnosed at 71 years and followed until her death at
age 83 years. We recorded in the spreadsheet the ages ranging
from the age at earliest diagnosis in the sample (71 years) to the
oldest age observed at last follow-up in the sample (89 years).
For each subject i (where i � 1–4), the probability (or hazard)
of dying for each year of age t, hi(t), is obtained from the Na-
tional Vital Statistics Reports within the table that is matched on
the subject’s sex and race. The redundancy within the data for
each subject results from the fact that the actuarial table we used

gave annual death rates in 5-year categories only (e.g., 70–74
years).

To obtain the overall expected number of deaths, it is neces-
sary to calculate the cumulative death rate at the last follow-up
for all subjects in the study. For each subject, the cumulative
death rate by each age t after diagnosis is

Hi�t� = �
u = ai

t − 1

hi�u�, [1]

and is calculated for each year after the age at diagnosis. This
value is calculated at all years (beyond the end of follow-up for
each patient) because it is needed for the survival curve estimate.
The cumulative death rate is obtained by adding the death rates
at each year to the cumulative death rate for the previous year.
If patient 2, diagnosed at age 74 years, is used as an example,
then the cumulative death rate at age 76 years is 0.023 + 0.037
� 0.060, and the cumulative death rate at age 77 is 0.037 +
0.060 � 0.097. The overall expected number of deaths, E, is
found by adding the cumulative death rate at the last age of
follow-up, ti, over all N individuals in the sample.

E = �
i = 1

N

Hi�ti�. [ 2]

In Table 1, the cumulative death rate at the age of last follow-
up is indicated in boldface type. For this small dataset, the ex-
pected number of deaths (E) � 1.584 + 0.208 + 0.326 + 0.466
� 2.584. The test for equality of mortality of the sample popu-
lation with that of the standard population is calculated as

�O − E�2�E. [ 3]

We show in the Appendix, under the null hypothesis, that the
survival of the sample population is the same as that of the

Table 1. Calculating expected number of deaths

Age
i

Patient 1 Patient 2 Patient 3 Patient 4

Age-specific
death rate*

Cumulative
death rate†

Age-specific
death rate

Cumulative
death rate

Age-specific
death rate

Cumulative
death rate

Age-specific
death rate

Cumulative
death rate

71 0.023
72 0.039 0.023 0.023
73 0.039 0.039 0.023 0.046
74 0.039 0.078 0.023 0.023 0.069
75 0.058 0.117 0.037 0.023 0.037 0.092
76 0.058 0.175 0.037 0.060 0.037 0.129
77 0.058 0.233 0.037 0.097 0.037 0.166
78 0.058 0.291 0.037 0.134 0.037 0.037 0.203
79 0.058 0.349 0.037 0.171 0.037 0.037 0.037 0.240
80 0.093 0.407 0.063 0.208‡ 0.063 0.074 0.063 0.277
81 0.093 0.500 0.063 0.271 0.063 0.137 0.063 0.340
82 0.093 0.593 0.063 0.334 0.063 0.200 0.063 0.403
83 0.093 0.686 0.063 0.397 0.063 0.263 0.063 0.466
84 0.093 0.779 0.063 0.460 0.063 0.326 0.063 0.529
85 0.178 0.872 0.147 0.523 0.147 0.389 0.147 0.592
86 0.178 1.05 0.147 0.670 0.147 0.536 0.147 0.739
87 0.178 1.228 0.147 0.817 0.147 0.683 0.147 0.886
88 0.178 1.406 0.147 0.964 0.147 0.830 0.147 1.033
89 0.178 1.584 0.147 1.111 0.147 0.977 0.147 1.180

*Age-specific death rate � hi(t).

†Cumulative death rate = Hi(t) � �
u = ai

t − 1

hi( u) .

‡Boldface type indicates the cumulative death rate at the age of last follow-up.
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matched population—the test shown in equation 3 will be dis-
tributed as a chi-square distribution with 1 df. Therefore, a test
for equality is performed by comparing equation 3 with tabled
extreme values of this distribution (9).

We note that the test expressed in equation 3 using equation
2 is equivalent to the test as discussed (4,5). This test has been
referred to as the one-sample log-rank test (5), in that it is based
on the proportional hazards model, which is the same model that
underlies the standard two-sample log-rank test. The mathemati-
cal development of this test is given in the Appendix. This test
has the same functional form as the usual (two-sample) log-rank
test. However, in this test, the expected value, E, is derived from
actuarial tables, whereas, in the two-sample test, the expected
value is derived from the combined sample under an assumption
that the mortality is the same in the two populations. The vari-
ances of these two tests are quite different. The log-rank test is
calculated under the assumption that both groups are samples
and thus subject to variation, whereas the one-sample test takes
into account that only the sample (not the standard population)
would change if the study were done on a new set of patients.

RELATIONSHIP TO THE STANDARDIZED

MORTALITY RATIO

Analysis of a cohort group usually entails comparison of the
survival distribution for the cohort with that of the standard
population. The standardized mortality ratio has been used since
1786. It is the ratio of the number of observed deaths to the
number of expected deaths in a demographically matched stan-
dard population, O/E. The expected number of deaths, E, is
calculated as in equation 2. The test for whether survival in the
sample differs from that of the demographically matched popu-
lation is given by the statistic (O – E)2/E, which is compared
with a chi-square distribution on 1 df. For small datasets, an
exact test is calculated as previously described (10). The depar-

ture of the standardized mortality ratio from 1 provides evidence
that the observed mortality in the cohort differs from that of the
standard population. The one-sample log-rank test described
above is a test of whether the standardized mortality ratio is
different from 1.

ESTIMATION OF EXPECTED SURVIVAL DISTRIBUTION

It is useful to provide a graph to visually compare the survi-
vorship of the sample with that of the standard population. The
graph of the survival distribution of the standard population is
calculated by using the cumulative death rate for each subject (as
calculated for obtaining the expected number of deaths), mea-
sured from the age at diagnosis. This is illustrated on our small
dataset used in Table 1. First, we create a second spreadsheet as
shown in Table 2. We then enter the cumulative death rate up to
each time for each subject. In contrast to Table 1, where time
was measured by chronological age of the patients, in Table 2,
time, s, is measured from the point of diagnosis to the end of the
longest follow-up time of the study. For each patient, the first
entry corresponds to the cumulative death rate for the first year
after diagnosis. The entry in the sth row for subject i is the
cumulative death rate at a time s years after diagnosis, Hi(ai + s).

For each subject i in the study sample and for each year s after
diagnosis, we can calculate the expected probability of survival
beyond that year for an age-/sex-/race-matched person in the
standard population. This probability is calculated by

e− Hi�ai + s�. [ 4]

Note that the probability of survival calculated by equation 4
is a function of the death rates calculated by equation 1. How-
ever, in contrast to the calculations for the one-sample test,
which stop at the end of observation (time of censoring or death)
for each subject, the calculations for the survival curve estimate
are performed for every year after diagnosis, regardless of how

Table 2. Calculating survival estimate

Years
on study

Patient 1 Patient 2 Patient 3 Patient 4

Cumulative
death rate*

Individual
survival†

Cumulative
death rate

Individual
survival

Cumulative
death rate

Individual
survival

Cumulative
death rate

Individual
survival

Survival
estimate‡

0 1.0
1 0.039 .96 0.023 .98 0.037 .96 0.023 .98 .97
2 0.078 .92 0.060 .94 0.074 .93 0.046 .96 .94
3 0.117 .89 0.097 .91 0.137 .87 0.069 .93 .90
4 0.175 .84 0.134 .87 0.200 .82 0.092 .91 .86
5 0.233 .79 0.171 .84 0.263 .77 0.129 .88 .82
6 0.291 .75 0.208 .81 0.326 .72 0.166 .85 .78
7 0.349 .71 0.271 .76 0.389 .68 0.203 .82 .74
8 0.407 .67 0.334 .72 0.536 .59 0.240 .79 .69
9 0.500 .61 0.397 .67 0.683 .51 0.277 .76 .64

10 0.593 .55 0.460 .63 0.830 .44 0.340 .71 .58
11 0.686 .50 0.523 .59 0.977 .38 0.403 .67 .54
12 0.779 .46 0.670 .51 1.124 .32 0.466 .63 .48
13 0.872 .42 0.817 .44 1.271 .28 0.529 .59 .43
14 1.050 .35 0.964 .38 1.418 .24 0.592 .55 .38
15 1.228 .29 1.111 .33 1.565 .21 0.739 .48 .33
16 1.406 .25 1.258 .28 1.712 .18 0.886 .41 .28
17 1.584 .21 1.405 .25 1.859 .16 1.033 .36 .25
18 1.762 .17 1.552 .21 2.006 .13 1.180 .31 .21

*Cumulative death rate � Hi(ai + s).

†Individual survival = e − Hi( ai + s ) .

‡Survival estimate = S0 ( s ) =
1

N �
i = 1

N

e− Hi ( ai + s ) .

1436 COMMENTARY Journal of the National Cancer Institute, Vol. 95, No. 19, October 1, 2003



long each subject was actually followed. We note that survivor-
ship is estimated by assuming that the censoring is independent
of age at diagnosis. However, if this were not the case, alternate
methods would be required. The proof for equation 4 is shown
in the Appendix.

The overall expected survival rate for the study population at
each year, s, after diagnosis, S0(s), is calculated by dividing the
sum of the N survival rates at each time by the number of
subjects (N):

S0�s� =
1

N �
i = 1

N

e− Hi�ai + s�. [ 5]

In the small example shown in Table 2, these survival esti-
mates are calculated by averaging the individual survival rates
that appear in each row and are recorded in the final column as
the survival estimate. Note that the final row of Table 2 for
patient 3 corresponds to the age of 95 years even though she was
followed only until age 84 years. We filled in the last rows of
Table 2 with the race-/sex-specific death rate in the National
Vital Statistics tables for individuals grouped into a single age
category of 85 years or older.

The survival function (equation 5) is calculated for all times
s from 1 to the longest time from diagnosis to end of follow-up
in the sample. At time 0, its value is 1. The estimate can be
simultaneously plotted with the Kaplan–Meier estimate (2) for
survivorship of the observed sample. Confidence intervals on the
sample survivorship function can be calculated as previously
published (2). We note that censorship has been accounted for in
the Kaplan–Meier curve; in the standard population curve, there
is no censoring.

POWER AND CONFIDENCE INTERVALS

Often comparisons with a standard population are designed to
argue that the treated population has better or the same survival
distribution as the standard population. When the intention is to
find equivalence to the standard population, it is best to present
a confidence interval for the standardized mortality ratio. If this
interval includes 1, then the evidence is consistent with the con-
clusion that the two populations may have the same survival
distribution. We note that the estimate of the standardized mor-
tality ratio, O/E, is an estimate of the relative risk from the
proportional hazards model. The 95% confidence interval on the
standardized mortality ratio is given by

O�E + �1,1 − ��2
2 �2E � ��1,1 − ��2

2 �4O + �1,1 − ��2
2 ��2E. [ 6]

This formula is derived in the Appendix.
If a study is undertaken to determine whether there is a dif-

ference in survival between a sample and a standard population,
then the study must be designed to ensure sufficient statistical
power to detect a specified relative risk, R, for death associated
with the study population compared with the standard popula-
tion. To accomplish this, it is necessary to determine how many
deaths must be observed in the sample. To calculate the required
sample size, we assume that the probability that the null hypoth-
esis will be rejected will be set at a two-sided � level (usually
.05) and need to determine how many deaths must be observed
to ensure that the one-sample log-rank test will reject the null

hypothesis, given that the alternative is true with probability
1 – � (commonly 80%). This number of deaths, D, can be
derived [see (11)] by

D = ��Z1 − ��2 + Z1 − ��R�

R − 1 �2

, [ 7]

where Zu corresponds to the tabled value of the uth percentile of
a standard normal distribution (9).

ILLUSTRATION: COMPARING PATIENTS TREATED FOR

EXTRA-MAMMARY PAGET’S DISEASE TO THE

STANDARD POPULATION

Extra-mammary Paget’s disease is a relatively uncommon
clinical entity. Although Paget primarily described the disease
(which now bears his name) in the breast, he did mention that the
same disease may also occur in other parts of the body (12).
Paget’s disease is a cutaneous adenocarcinoma, usually of epi-
dermal origin and glandular differentiation, that might be asso-
ciated with invasive adenocarcinoma or in situ adenocarcinoma
of the apocrine glands or underlying visceral malignancy (13).
Extra-mammary Paget’s disease is histologically identical to
Paget’s disease of the breast. In extra-mammary Paget’s disease,
the epidermis is infiltrated by irregular large, pale cells that are
scattered between compressed squamous epithelial cells with an
otherwise normal appearance (14–17). Because extra-mammary
Paget’s disease is such a rare condition, it is not possible to
estimate its true incidence or the frequency with which it be-
comes clinically malignant or coexists with a visceral carci-
noma. Furthermore, the optimal management of patients with
extra-mammary Paget’s disease is still unclear. Complete surgi-
cal resection, with or without skin grafting, seems to be the
treatment of choice for patients with extra-mammary Paget’s
disease. The disease, however, tends to recur with the same
frequency after local excision and more extended surgery. An
important issue when treating patients with extra-mammary Pag-
et’s disease is the high incidence of concurrent secondary ma-
lignancies. Given the high median age (70 years) of patients with
extra-mammary Paget’s disease, this observation partly reflects
the approximate 1 : 4 and 1 : 3 lifetime risks for any malignancy
in women and men, respectively.

Recently, investigators at Massachusetts General Hospital
undertook a retrospective study of patients with extra-mammary
Paget’s disease who were treated at the hospital to determine the
clinical course of this disease. Thirty-three consecutive patients
treated at Massachusetts General Hospital between January 1971
and August 1998 for extra-mammary Paget’s disease were iden-
tified from the Massachusetts General Hospital Tumor Registry.
The medical records for these patients were reviewed, and in-
formation was collected on demographic features, clinical pre-
sentation, the extent and pathologic features of the disease, tu-
mor location, type of treatment, time of recurrence, and time and
cause of death. Interest was focused on time to recurrence and
recurrence-free and overall survival. The investigators believed
that, because this cancer occurs late in life and is of relatively
low lethality, the survival experience of the 33 subjects of the
report was not different from that of a demographically matched
cohort of the standard population. They requested a graph show-
ing this comparison and a statistical test of the hypothesis.
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The 33 subjects in the extra-mammary Paget’s disease study
had a median age of 70 years (range � 52–86 years). No patient
died of extra-mammary Paget’s disease. However, 14 (42%) of
the 33 patients with extra-mammary Paget’s disease had a total
of 16 concurrent secondary malignancies (five breast, three co-
lon/rectal, three basal cell, two renal cell, one bladder, one he-
patocellular, and one vulvar squamous cell carcinomas). In ad-
dition, 14 (42%) of the 33 patients had disease recurrence that
required additional surgeries. The median follow-up of these
subjects was 5.7 years (range � 0.5–22.16 years). In the report
on this series of patients (7), the standardized mortality ratio and
associated 95% confidence interval were reported. Because the
confidence interval included 1, the conclusion was that the sur-
vival of the study subjects was not statistically significantly
different from that of a demographically matched standard popu-
lation.

The comparison of survival using the one-sample log-rank
test described in this commentary results in a �1

2 of 1.24 with an
associated P � .266, concurring with the conclusion that sur-
vival in this group of patients was not different from that in the
age-matched standard population. Fig. 1 shows the curves that
have been calculated as described in this commentary and pro-
vides visual evidence that the patients with extra-mammary Pag-
et’s disease do not experience a different survival distribution
than that of the standard population. The 95% confidence inter-
vals on the 5-, 10-, and 15-year survivorship of the sample are
also provided.

DISCUSSION

It is important to consider that the power of the comparison
of survival in a sample with that in a population is a function of
the number of deaths. If investigators wish to test whether the
population from which the sample is drawn is experiencing a

lower (or higher) survival than that of the standard population,
then they should design the study so that there will be an ad-
equate number of observed deaths to ensure sufficient power. If,
instead, the intent is to show that the population from which the
sample is drawn is experiencing the same mortality as the com-
parison population, it may be more appropriate to provide con-
fidence intervals on the standardized mortality ratio and base the
discussion of equivalence on this interval. The test of equiva-
lence ordinarily requires a very large study, and a large P value
from a small study should not be mistakenly reported as con-
clusively showing survival equivalence. Finally, we note that the
test described herein is based on the proportional hazards as-
sumption and will not be appropriate if the survival curve for the
sample population crosses the curve for the standard population.
The curves could cross, for example, if there were a high early
mortality from treatment, but the risk in survivors of this period
returned to the risk in the standard population. If such a crossing
occurs, it may be more appropriate to compare survival after a
specific guarantee time (such as time from end of treatment) or
to use a model-free method such as the Kolmogorov–Smirnov
test (9).

APPENDIX

Derivation of One-Sample Log-Rank Test

For each subject, i, our data consist of ai (the time of diagnosis), �i

(an indicator of whether the subject died on study), and ti (the age at
most recent follow-up time or death). The survivorship for the standard
population is S0. We assume the proportional hazards model, that is,
that the survivorship for our cohort is S, and if S(a,t) is the probability
of surviving at least t units of time conditional on survival to age a
(diagnosis), then

S�a,t� = S0�a,t�e�

. [ 8]

Thus, if � � 0, then the population under study is experiencing a
survivorship that cannot be distinguished from that of the standard
population (of people who were alive at the age ai). The relative risk,
referred to as R above, is equivalent to e� from the model equation 8.

To derive a test for whether survival distribution of the sample popu-
lation is different from that of the standard population, we will use a
score test derived under the proportional hazards model, equation 8. We
note that individual i who is diagnosed at age ai and who is alive at the
last observation at ti years of age (censored) will have an indicator for
failure of �i � 0 and will contribute a factor S0(ai,ti)

e� to the likelihood.
Someone who dies at ti years of age will have an indicator for failure of
�i � 1 and will contribute the factor –�/�t(S0(ai,ti)

e�) to the likelihood.
Therefore, the likelihood will be

�
i = 1

N

�e�S0�ai,ti�
e� − 1���i� − S0��ai,ti��

�iS0�ai,ti�
e��1 − �i�, [ 9]

where S0�(ai,ti) is the derivative of S0(a,t) with respect to t, evaluated at
a � ai,t � ti. Taking the derivative of the log of the likelihood given
by equation 9 with respect to � and evaluating it at � � 0, we obtain
the score test of

�
i

�i + logS0�ai,ti�. [ 10 ]

However, we can show that the second part of the sum in equation
10, �ilog S0(ai,ti), represents the negative expected value for the num-

Fig. 1. Comparison of survival distribution of extra-mammary Paget’s disease
patients (dashed line) to that of the age-/sex-/race-matched general U.S. popu-
lation (solid line).
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ber of deaths. In fact, for someone diagnosed at time ai, the probability
of surviving to ti is

S0�ai,ti� = �
u = ai

ti − 1

�1 − hi�u�� = e�u = ai

ti − 1 log�1 − hi�u��. [ 11 ]

However, since hi is small, log(1 – hi) ≈ –hi (using the Taylor

expansion) and thus equation 11 is approximately equal to e − �u = ai

ti − 1 hi�u�.
However, S0(ai,ti) is the survival for a member of the standard popu-
lation (alive at ai) and thus –∑ ilog S0(ai,ti) is the cumulative hazard,
which can be approximated by the cumulative death rate for this mem-
ber of the standard population. When this is added up over all i, we
obtain �i = 1

N �u = ai
ti − 1 hi�u�, which is the expected number of deaths (E).

Thus, equation 10 is just the observed number of deaths minus the
expected number of deaths, O – E.

Confidence Interval for Standardized Mortality Ratio

The confidence interval for the standardized mortality ratio is based
on the fact that, regardless of the true value of � in the model described
by equation 8, because O is Poisson distributed with mean e�E, the
function

�O − e�0E�2��e�0E� [ 12 ]

is chi-square distributed with 1 df. Thus, the (1 – a)% confidence
interval is found by setting equation 12 equal to �1,1 − ��2

2 and solving
the resulting quadratic equation. This solution will be the function
shown in equation 6.
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