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Missing Data in Screening Studies

e Patients are monitored for occurrence of events.

e Event can only be detected by a clinical exam or lab
test at clinic visit.

— HIV test for presence of antibody

e Some patients miss exams and we only know the event
took place between the subject’s last negative and first
positive screening time.

e Data set consists of overlapping intervals in which
failures occurred.



Complex Missing Screening Data

e Often there are two events of interest in the study

e First event marks onset of disease—antibody present
—interval censored

e Second event marks a progression of the disease
—symptomatic stage

— Could be Exact /right censored— such as diagnosis
of Opportunistic infection indicating AIDS

— Could be interval censored as well-CD4 <200 indi-
cating AIDS

e Sometimes interest is focused on the time between the
two events—latency—where at the first (and possibly
second) are interval censored

e In addition time-varying covariate information required
for regression analysis may be missing



Example: CMYV shedding in the blood and
urine of HIV patients

e Patients were participating in a PCP prophylaxis trial

e Observational substudy monitored patients every 6
months for CMV shedding in the blood and urine

e All shedding events were censored into the interval
between last negative and first positive screen.

e Shedding is asymptomatic but often precedes CMV
Retinitis which results in blindness

e Time of CMV Retinitis diagnosis was recorded
(exact /right censored)

e Analyses of interest: What is the time from shedding
to disease?

e Data given in Betensky and Finkelstein
Statistics in Medicine 1999



Screening Diabetics for Proteinuria
(Kidney Disease)

e Patients were monitored every 6 months for excess
urinary albumin excretion indicating nephropathy

e Microalbuminuria (trace of albumin) indicates early
kidney disease

e Proteinuria (higher levels of albumin) marks progres-
sive loss of renal function

e (Question of interest
— Glycohemoglobin A1C is an indicator of poor dia-

betes control

— Does A1C predict progression to Proteinuria?
e Problems with the data
— When screening visit is missed, time of Microalbu-

minuria and Proteinuria are interval censored.

— When a visit is missed, A1C (the covariate) is also
missing



Analysis of CMYV Latency
e Patients monitored every 6 months for CMV

— CMYV shedding in blood and urine
— Onset of CMV Retinitis

e First indication of shedding in urine

— 40 left censored
— 70 interval censored
— 67 right censored

e First indication of shedding in blood

— 5 left censored
— 22 interval censored
— 150 right censored

e CMV Diagnosis

— 33 exact
5 had last observation CMV Negative
— 144 right censored

e What is the time from first shedding until
CMV diagnosis?



Estimation of Latency: DeGruttola and
Lagakos 1989 (Biometrics)

e Nonparametric estimate from self-consistency
equations

e Noted that cannot transform data and
apply univariate methods

e Contribution to likelihood from subject 2
¥ ajpw;fi (1)
® where oz;k = 1 if observed data for " subject consis-
tent with infection at 7 and latency of k
e w; is density for infection
e f; is density for latency
e Assumes latency independent of infection time.
e If both y and £ indexed f, would allow dependence
e If impute infection time, likelihood separates.

e [ssue: Independence may not always be valid



Estimation of Latency Distribution Assuming
Dependence on Infection Time

e Infection 77, Disease onset 15, Latency 175 — T}

e T'wo approaches:

1. Can factor joint distribution of infection and la-
tency allowing dependence:

PT(Tl, T2 — Tl) = PT(Tl) . PT’(TQ — T1|T1) (2)

2. Can directly estimate the joint distribution of in-
fection and disease onset, Pr(7T1,T3) and calculate
latency from the convolution.



Estimation of Bivariate Failure

e Betensky and Finkelstein (SIM 1999)

e Showed that support for MLE is contained in a set of
rectangles of the plane

e Could now be considered as a univariate problem by
indexing the rectangles of support, j

e Likelihood for infection 77 and disease onset 75

I3 a9, (3)

e g, is probability associated with 7t square

o oz;- = 1 if observed infection and disease for i*" subject

could be in ;™ square

e Becomes a generalization of Turnbull 1976.



Bivariate Estimate

T1 Lett | T7 Right | T5 Left | T5 Right | Probability
1 7 10 10 0.122770066
9 9 11 11 0.076130347
9 9 12 12 0.050269077
1 7 9 9 0.023584944
1 7 14 14 0.046365059
8 8 9 9 0.002747089
9 9 14 14 0.061788326
8 8 14 14 0.001785231
10 10 11 11 0.065641243
10 10 12 12 0.113798321
11 11 14 14 0.060373420
12 12 13 13 0.120690554
12 12 12 12 0.021643962
11 11 15 15 0.016371399
13 13 14 14 0.102425363
13 13 15 15 0.053398388
14 14 15 15 0.032055336
8 8 8 8 0.013954193
15 15 15 16 0.014207681




Calculation of Latency
e Latency is the convolution of Ty and T}

e If data were complete, g; could be calculated as pro-
portion of j** square within the grid

e With interval censored data, support for distribution
g; 1s on disjoint rectangles.

e The distribution is indeterminate for squares within
these rectangles—non-identifiability

e Cannot directly calculate T, — T for each observation,
as 17 can be an interval and 75 could be right censored
— Example: Probability for (1,7] (10] is .1228
— Latency could be 8 if infection in (1, 2]
— Latency could be 1 if infection in (6, 7]

e Solution: Assume uniform distribution of the g; over
these squares (Note that this is still an MLE)

e Calculation of an MLE for latency is now simple

— Probability of latency 8 is % 1228 = .0154

— Probability of latency 1 is % - 1228



Generalizing Degruttola et al (1989) to Allow
Dependence

e Degruttola et al (1989) factored joint distribution
P?“(Tl,Tg—Tl) = PT(Tl) 'PT(TQ—Tl)

L= ri[§%aj.kwjfk (4)
e Instead factor the joint distribution:
P’I“(Tl,Tg — Tl) — PT(Tl) : PT(TQ — T1|T1)
— where a;, is indicator could be T} = 5, To =11 = k
— wj 1s infection at j
— fjx 1s latency distribution at k given infection at j

e Frydman (1995) proposed



Extend To Incorporate Covariates on
Infection and Latency

e Likelihood factored as before, but include covariate z

L= 1}%%@§kwj(z)fjk(z) (6)

e Model dependence of infection, T} on covariates Z
Logith(z) — Ky + 512 (7)
where W; is CDF for infection

e Model dependence of latency 75 — T on covariates
and infection time

Logit Fj(z) = pr + B2z + B3(J) (8)
where Fjj is CDF for latency

e Work in progress



Principles of the Regression Methodology

e Discretize time by categorizing simultaneously on both
dimensions (infection and latency)

e May have to group data
e Multinomial model

e Use E-M algorithm because it simplifies when data are
complete

e Non-parametric methods require large number of pa-
rameters

e Computationally intensive
e Simplified if points of positive mass are known

e Issues of identifiability—mild parametric assumptions



Missing Failure Time Observations and
Time-Varying Covariates

e Regression with missing outcomes and covariates

e Analysis of the relationship of recent A1C on risk for
proteinuria in patients with microalbuminuria

e Joint distribution for A1C Z and Proteinuria 17" mod-
eled as

L(t, z) = g(t|z) - m(z) 9)

e m(z) longitudinal model for A1C—random effects model

e g(t|z) logistic model for Proteinuria as a function of
previous A1C

e Use Pooling Repeated Observations (PRO) method to
model person-exam risk

— Cupples et al (1988) SIM
— Asymptotically equivalent to grouped Cox model



Multiple Imputation

e Used an adaptation of the Predictive Mean Matching
method (Heitjan and Little JRSS C 1991)

e Missing progression imputed as follows:

— Fit logistic model on complete data to get ﬁA

— For all subjects (including missing and complete),
use (3 to get predicted probability of progression T'
for each subject

— Divide the sample into deciles by these probabilities

— For each bin, sample with replacement from com-
plete observations to create a bootstrap sample equal
to number of complete in that bin.

— For each subject with missing outcome in the bin,
sample with replacement from bootstrap sample

— Combine these imputed and complete data to get
one imputation.

e Produce 5 imputed samples

e Calculate new estimates for 8 as in Rubin (1986)



Handling Missing Time-Varying Covariate
(A1C)

e it random effects model m(z) for A1C

e Create decile bins based on predicted A1C

e Create bootstrap sample of complete subjects in each
bin

e Select imputed data for missing Z as before for T

e Produce one imputed set of Z

e Include these in the logistic model to predict progres-
sion as described above.



Analysis of Proteinuria in Diabetes

e 366 Subjects with maximum of 4 biannual visits
e Initial analysis selected on the complete data:

— Only had 929 subject-visits
— Odds Ratio 8.103 (3.1, 21.1)

e Next investigator asked to have A1C "filled in”

— A1C tracks, so suggested that we use the last non-
missing observation to complete the missing data

on A1C (LOCF method).

— Only use person-exams with complete failures
— 975 person-visits

— Odds Ratio: 6.0 (2.6, 13.8)
e We applied Using Multiple Imputation:

— 1464 person-visits
— Odds Ratio 4.3 (1.6, 11.3)



Discussion

e Missingness or Censoring could be dependent
— Finkelstein, Schoenfeld and Goggins 2002 handled
dependent interval censoring.
— Need to generalize to latency

— Generalize Multiple Imputation method
e Computational /asymptotic issues

— Algorithm is slow—convergence issues

— Number of parameters is large and increasing

e Multiple Imputation, GEE, etc have moved into the
realm of non-statisticians.
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