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1 Introduction
This technical report summarizes some of the work done to try to develop asymp-
totic tests for location and variance differences between two groups of microarrays
or more generally any high dimensional vectors. This work was undertaken to find
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an alternative to the permutation tests for location and variance developed with Dr.
David Schoenfeld at the Massachusetts General Hospital Biostatistics Center.

The permutation tests are based on the distance matrix of pairwise distances
between all microarrays of both groups. It was hoped that the test statistics used
for the permutation test would turn out to be asymptotically normal under very
weak assumptions about the underlying probablity distribution of the microarrays
which is essentially unknowable due to its very high dimension.

As it turned out, under the assumption of additive errors and squared Eu-
clidean distance, the location test is not asymptotically normal without further
assumptions whereas the variance test and the equivalence test are asymptotically
normal.

2 One Independent Sample

2.1 The Model
This section proposes a one sample model of the distance matrix which may also
be used as a global null model for the comparison of two samples assumed, under
the null, to be drawn from the same distribution.

Let X1, . . . , Xn be a random sample of independent and identically distributed
random variables. Let dij = d[Xi, Xj] be a function (loosely called a distance mea-
sure) mapping pairs of random variables into the real line such that:

dij ≡ d0 ⇔ i = j (1)

and
dij = dji (2)

where d0 is a fixed constant. For example if if d[·] is Pearson correlation then
d0 = 1 while if d[·] is Euclidean distance then d0 = 0.

It follows from Equations 1 and 2 that all the information is contained in the set
of n(n− 1)/2 pairwise distances {dij}, 1 ≤ i < j ≤ n. The {dij} are identically
distributed with common mean E[dij] = d, but dij and dkl are independent if and
only if they do not share a common index. That is, if {i, j} ∩ {k, l} = φ. If dij and
dkl do share a common index, then dij and dkl are dependent.

It follows that we can assume a two parameter covariance matrix for {dij}with
parameters:

Variance[dij] = σ2 (3)
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for all dij and
Covariance[dij, dkl] = ρσ2 (4)

if dij and dkl are dependent.

2.2 Sample Average Distance
Let I be the set of all nI independent pairs and D the set of all nD dependent pairs
of {dij,dkl}. A simple counting argument gives;

nI =
n(n− 1)(n− 2)(n− 3)

8
(5)

and

nD =
n(n− 1)(n− 2)

2
(6)

It follows that the sample average distance:

d̄xx =
2

n(n− 1)

∑
i<j

dij (7)

has variance
2σ2

n(n− 1)
+

4(n− 2)ρσ2

n(n− 1)
(8)

which vanishes as n →∞ so that d̄ is an unbiased and consistent estimator of d.

2.3 Covariance Parameter Estimators
Define the two sample statistics:

S2
I =

1

2nI

∑

{dij,dkl}εI
(dij − dkl)

2 (9)

S2
D =

1

2nD

∑

{dij,dkl}εD
(dij − dkl)

2 (10)

It follows that

E[S2
I ] = σ2 (11)

E[S2
I − S2

D] = ρσ2 (12)
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and the statistic

S2 =
2S2

I

n(n− 1)
+

4(n− 2)(S2
I − S2

D)

n(n− 1)
(13)

is an unbiased estimate of the variance of the sample average distance given by
Equation 7. Note that for n < 4, nI = 0 and the proposed covariance parameter
estimators do not exist.

2.4 Consistency of Covariance Parameter Estimators
In this section we show that S2

I and S2
D are consistent estimators. Since they are

unbiased it suffices to show that their variance vanishes as n →∞.
Since each estimator is the average of identically distributed squared differ-

ences of the form, (dij − dkl)
2, it is only necessary to count the number of non-zero

covariance terms in the covariance matrix of the (dij − dkl)
2 of each estimator.

Let’s consider the general case first to clarify the idea. Suppose we have a
sample of k identically distributed random variables, xi, . . . , xk, with common
variance σ2 and covariance {ρijσ

2}i6=j. Suppose there are k0 covariance terms that
are identically zero, then since the covariance matrix of the variables xi is k by
k and since there are (k2 − k) off diagonal covariance terms, the variance of the
sample mean is given by:

σ2

k
+

(k2 − k− k0)ρ̄σ2

k2
(14)

where ρ̄ is the mean of the non-zero ρij. Thus it can be seen that the variance
vanishes as k →∞ provide k0 ∼ ◦(k2).

Consider first S2
I , which is the average of the terms (dij − dkl)

2 where the ele-
ments of the pair {dij, dkl} are independent. Each of these pairs is independent of
any other pair drawn from the n− 4 by n− 4 sub-matrix remaining after exclud-
ing the rows and columns common to i, j, k, l. Thus, by Equation 5, each pair is
independent of

(n− 4)(n− 5)(n− 6)(n− 7)

8
(15)

other pairs and since there are

n(n− 1)(n− 2)(n− 3)

8
(16)

pairs the number of identically zero covariance terms is at least

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7)

64
(17)
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which is of order (
n(n− 1)(n− 2)(n− 3)

8

)2

(18)

as desired.
Consider next S2

D, which is the average of the terms (dij − dkl)
2, where the

elements of the pair {dij, dkl} are dependent. Each of these pairs is independent
of any other pair drawn from the n− 3 by n− 3 sub-matrix remaining after ex-
cluding rows and columns common to i, j, k, l. Thus, by Equation 6, each pair is
independent of

(n− 3)(n− 4)(n− 5)

2
(19)

other pairs and since there are

n(n− 1)(n− 2)

2
(20)

pairs the number of identically zero covariance terms is at least

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

4
(21)

which is of order (
n(n− 1)(n− 2)

2

)2

(22)

as desired.

2.5 Test Statistics
Under this global null model we will consider test statistics of the form:

T =
∑
i<j

cijdij (23)

where the cij are specified constants such that:
∑
i<j

cij = 0 (24)

so that
E[T] = 0 (25)
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and
Variance[T] =

∑
i<j

∑

k<l

cijcklCov[dij, dkl] (26)

where

Cov[dij, dkl] = 0 if #[{i, j} ∩ {k, l}] = 0 (27)
Cov[dij, dkl] = ρσ2 if #[{i, j} ∩ {k, l}] = 1 (28)
Cov[dij, dkl] = σ2 if #[{i, j} ∩ {k, l}] = 2 (29)

2.6 Simplest Example
To make the ideas concrete consider just four independent and identically dis-
tributed random variables X1, X2, X3, X4. The six pairwise distances, {d12, d13,
d14, d23, d24, d34}, can be laid out as the upper triangular region of the distance
matrix shown in Table 1. There are three independent pairs {d12, d34}, {d14, d23},
{d13, d24} so the covariance matrix has six zero and twenty four non-zero off di-
agonal elements as shown in Table 2.

Table 1: Triangular Upper Half of Distance Matrix

X1 X2 X3 X4

X1 d0 d12 d13 d14

X2 . d0 d23 d24

X3 . . d0 d34

X4 . . . d0
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Table 2: Covariance Matrix of {d12, d13, d14, d23, d24, d34}

d12 d13 d14 d23 d24 d34

d12 σ2 ρσ2 ρσ2 ρσ2 ρσ2 0
d13 ρσ2 σ2 ρσ2 ρσ2 0 ρσ2

d14 ρσ2 ρσ2 σ2 0 ρσ2 ρσ2

d23 ρσ2 ρσ2 0 σ2 ρσ2 ρσ2

d24 ρσ2 0 ρσ2 ρσ2 σ2 ρσ2

d34 0 ρσ2 ρσ2 ρσ2 ρσ2 σ2
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3 Two Independent Samples
In this section we discuss the pairwise distances between two independent samples
of microarrays. Let X1, . . . , Xn be an IID random sample from distribution F and
Y1, . . . , Ym be an IID random sample from distribution G and let dij = d[Xi, Yj].

As a simple example let n = 3 and m = 4 giving the distance matrix shown
below.

Y1 Y2 Y3 Y4

X1 d11 d12 d13 d14

X2 d21 d22 d23 d24

X3 d31 d32 d33 d34

The {dij} are identically distributed with common mean E[dij] = d, but dij and
dkl are independent if and only if i 6= k and j 6= l.

We can assume a three parameter covariance matrix for {dij} with parameters:

Variance[dij] = σ2 (30)

for all dij and
Covariance[dij, dkl] = ρRσ2 (31)

if they share a commom row so that i = k and

Covariance[dij, dkl] = ρCσ2 (32)

if they share a common column so that j = l.

3.1 Sample Average Distance
Let I be the set of all nI independent pairs, R the set of all nR row dependent pairs,
and C the set of all nC column dependent pairs of the {dij,dkl}. A simple counting
argument gives:

nI =
nm(n− 1)(m− 1)

2
(33)

and

nR =
nm(m− 1)

2
(34)
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and

nC =
nm(n− 1)

2
(35)

It follows that the sample average distance

d̄xy =
1

nm

∑
i

∑
j

dij (36)

has variance
σ2

nm
+

(m− 1)ρRσ2

nm
+

(n− 1)ρCσ2

nm
(37)

which vanishes as n, m →∞ so that d̄xy is an unbiased and consistent estimator
of d.

3.2 Covariance Parameter Estimators
Define the three sample statistics:

S2
I =

1

2nI

∑

{dij,dkl}εI
(dij − dkl)

2 (38)

S2
R =

1

2nR

∑

{dij,dik}εR
(dij − dik)

2 (39)

S2
C =

1

2nC

∑

{dij,dkj}εC
(dij − dkj)

2 (40)

It follows that

E[S2
I ] = σ2 (41)

E[S2
I − S2

R] = ρRσ2 (42)
E[S2

I − S2
C] = ρCσ2 (43)

and the statistic

S2 =
S2

I

nm
+

(m− 1)ρR(S2
I − S2

R)

nm
+

(n− 1)ρC(S2
I − S2

C)

nm
(44)

is an unbiased estimate of the variance of the sample average distance given by
Equation 37.
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3.3 Consistency of Covariance Parameter Estimators
In this section we show that S2

I , S2
R, and S2

C are consistent estimators. Since they
are unbiased it suffices to show that their variance vanishes as n, m →∞.

Since each estimator is the average of identically distributed squared differ-
ences of the form, (dij − dkl)

2, it is only necessary to count the number of non-zero
covariance terms in the covariance matrix of the (dij − dkl)

2 of each estimator.
Let’s consider the general case first to clarify the idea. Suppose we have a

sample of k identically distributed random variables, xi, . . . , xk, with common
variance σ2 and covariance {ρijσ

2}i6=j. Suppose there are k0 covariance terms that
are identically zero. Then since the covariance matrix of the xi is k by k and since
there are (k2 − k) off diagonal covariance terms the variance of the sample mean
is given by:

σ2

k
+

(k2 − k− k0)ρ̄σ2

k2
(45)

where ρ̄ is the mean of the non-zero ρij. Thus it can be seen that the variance
vanishes as k →∞ provide k0 ∼ ◦(k2).

Consider first S2
I , which is the average of the terms (dij − dkl)

2, where the ele-
ments of the pair {dij, dkl} are independent. Each of these pairs is independent of
any other pair drawn from the n− 2 rows and m− 2 columns remaining after ex-
cluding rows i, k and columns j, l. Thus, by Equation 33, each pair is independent
of

(n− 2)(m− 2)(n− 3)(m− 3)

2
(46)

other pairs and since there are

nm(n− 1)(m− 1)

2
(47)

pairs the number of identically zero covariance terms is at least

nm(n− 1)(m− 1)(n− 2)(m− 2)(n− 3)(m− 3)

4
(48)

which is of order (
nm(n− 1)(m− 1)

2

)2

(49)

as desired.
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Consider next S2
R, which is the average of the terms (dij − dik)

2, where the
elements of the pair {dij, dik} share a common row. Each of these pairs is inde-
pendent of any other pair drawn from the n− 1 rows and m− 2 columns remain-
ing after excluding row i and columns j, k. Thus, by Equation 34, each pair is
independent of

(n− 1)(m− 2)(m− 3)

2
(50)

other pairs and since there are

nm(m− 1)

2
(51)

pairs the number of identically zero covariance terms is at least

nm(m− 1)(n− 1)(m− 2)(m− 3)

4
(52)

which is of order (
nm(m− 1)

2

)2

(53)

as desired.
A similar argument applies to S2

C which is the average of the column dependent
pairs.

4 Additive Errors and Euclidean Distance

4.1 The Model
In this section we specialize our general model to the case of additive errors and
Euclidean distance.

Consider IID samples X1, . . . , Xn and Y1, . . . , Ym from two different distri-
butions. Under an additive error model we have:

Xi = µx + εi (54)
Yi = µy + δi (55)

where µx and µy are the respective mean vectors of the Xi and Yi and εi and δi are
random error vectors with expected value 0 and variance covariance matrices Σx
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and Σy respectively. Since the samples are IID the random error vectors are also
independent.

If we use squared Euclidean distance as our distance measure then the within
X mean distance is:

d̄xx =
2

n(n− 1)

∑
i<j

|Xi − Xj|2 (56)

and the within Y mean distance is:

d̄yy =
2

m(m− 1)

∑
i<j

|Yi − Yj|2 (57)

and the between X and Y mean distance is:

d̄xy =
1

nm

∑
i,j

|Xi − Yj|2 (58)

These sample statistics have expected values:

E[d̄xx] = 2Tr[Σx] (59)
E[d̄yy] = 2Tr[Σy] (60)
E[d̄xy] = |µx − µy|2 + Tr[Σx] + Tr[Σy] (61)

where Tr[] is the trace operator which gives the sum of the diagonal elements of a
matrix.

4.2 A Lemma
We need a simple lemma to use in the proofs of asymptotic normality. Let eij be
defined as any one of the following three inner products:

eij = (Xi − µx)
T(Xj − µx) (62)

or
eij = (Yi − µy)

T(Yj − µy) (63)

or
eij = (Xi − µx)

T(Yj − µy) (64)

It follows that for i 6= j 6= k 6= i we have:

E[eij] = 0 (65)
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and
cov[eij, eik] = 0 (66)

and
cov[eij, eii] = 0 (67)

The proof of this follows immediately from the one dimensional case. Let
ei, ej, ek be mean zero pairwise independent scalars. Then eii = eiei, eij = eiej, eik = eiek

and
E[eij] = E[ei]E[ej] = 0

and

cov[eij, eik] = E[eiejeiek]− E[eiej]E[eiek]

= E[eiei]E[ej]E[ek]− E[ei]E[ej]E[ei]E[ek]

= 0

and

cov[eij, eii] = E[eieieiej]− E[eiej]E[eiei]

= E[eieiei]E[ej]− E[ei]E[ej]E[eiei]

= 0

4.3 Independent Asymptotically Normal Random Variables
In this section we prove that a linear combination of two independent asymptot-
ically normal random variables is also asymptotically normal. We will use this
result in the proofs of asymptotic normality.

Let Wn and Zm be two sequences of random variables which are independent
for all values of n and m and which converge in distribution to the normal ran-
dom variables W and Z respectively as n and m go to infinity. Let a and b be
constants and let φX(t) denote the characteristic function of the random variable
X. Then by continuity [1] aWn and bZm converge in distribution to the normal
random variables aW and bZ respectively. Since Wn and Zm are independent
the characteristic function of aWn + bZm factors into φaWn(t)φbZm(t), which, by
Levy’s continuity theorem [2] converges to φaW(t)φbZ(t) as n and m go to in-
finity. Since aW and bZ are both normal random variables, the product of their
characteristic functions is also that of a normal random variable. Thus the linear
combination aWn + bZm converges in distribution to a normal random variable
by Levy’s continuity theorem.
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4.4 One Sample Mean Distance: Asymptotic Normality
We have X1, . . . , Xn an IID random sample with common mean µx. The sample
mean squared Euclidean distance is:

d̄xx =
2

n(n− 1)

∑
i<j

|Xi − Xj|2 (68)

or by adding and subtracting µx:
2

n(n− 1)

∑
i<j

|Xi − µx + µx − Xj|2 (69)

which expands to:
2

n(n− 1)

∑
i<j

|Xi − µx|2 + |Xj − µx|2 − 2(Xi − µx)
T(Xj − µx) (70)

which simplifies to a sum of the two terms:
2

n

∑
i

|Xi − µx|2 (71)

− 4

n(n− 1)

∑
i<j

(Xi − µx)
T(Xj − µx) (72)

Now term 71 is twice the mean of n IID terms. Suppose each has mean µ
and variance V1. Term 72 is minus twice the mean of n(n− 1)/2 identically
distributed and uncorrelated terms of mean zero (by the lemma). Suppose each
has variance V2. We can center and rescale d̄xx to get:
√

n√
V1

(
d̄xx

2
− µ) =

√
n√
V1

(
1

n

∑
i

|Xi − µx|2 − µ

)
− 2

√
n

n(n− 1)
√

V1

∑
i<j

(Xi − µx)
T(Xj − µx)

(73)
Now as n →∞, the first term on the right hand side of Equation 73 converges in
distribution to N[0, 1] by the Central Limit Theorem [3]. Also since the second
term on the right in Equation 73, has mean zero and variance

2 ∗ V2

(n− 1)V1

(74)

which vanishes as n →∞, the term converges in probability to zero by Chebey-
chev’s inequality [3] . Thus by Slutsky’s Theorem [3] the entire right hand side of
Equation 73 converges in distribution to N[0, 1] as n →∞ and d̄xx is asymptoti-
cally normal.
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4.5 Two Sample Mean Distance: Asymptotic Normality
We have X1, . . . , Xn an IID random sample with common mean µx and Y1, . . . , Ym

an IID random sample with common mean µy. The sample mean squared Eu-
clidean distance is:

d̄xy =
1

nm

∑
i,j

|Xi − Yj|2 (75)

or by adding and subtracting µx − µy:

1

nm

∑
i,j

|Xi − µx + µx − µy + µy − Yj|2 (76)

which expands to a sum of the following terms:

t1 =
1

n

∑
i

(|Xi − µx|2 + 2(µx − µy)
T(Xi − µx)

)
(77)

t2 =
1

m

∑
j

(|Yj − µy|2 − 2(µx − µy)
T(Yj − µy)

)
(78)

t3 = − 1

nm

∑
i,j

2(Xi − µx)
T(Yj − µy) (79)

t4 = |µx − µy|2 (80)

Now t1 is the mean of n IID terms. Suppose each has mean µ1 and variance
V1. Similarly t2 is the mean of m IID terms. Suppose each has mean µ2 and
variance V2. Also t3 is a mean of nm uncorrelated terms of mean zero (by the
lemma). Suppose each has variance V3. Noting that t4 is a constant we can center
and rescale d̄xy to get:

√
nm

(
d̄xy − (µ1 + µ2 + t4)

)
√

mV1 + nV2

=

√
nm√

mV1 + nV2

(t1 − µ1) (81)

+

√
nm√

mV1 + nV2

(t2 − µ2) (82)

−
√

nm√
mV1 + nV2

t3 (83)
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The right hand side of Equation 81 can be re-written as:
√

nm√
mV1 + nV2

(t1 − µ1) =

√
nm
√

V1√
mV1 + nV2

√
n

√
n(t1 − µ1)√

V1

(84)

=

(
1 +

nV2

mV1

)− 1
2
√

n(t1 − µ1)√
V1

(85)

Assuming that n/m is either constant or converges to a constant as n →∞ and
m →∞ we have that the right hand side of Equation 85 converges to a constant
times a N[0, 1] random variable in distribution by the Central Limit and Slutsky’s
Theorems [3]. A similar result holds for Term 82.

Since Term 83 has mean value zero and variance

V3

mV1 + nV2

(86)

which vanishes as n, m →∞ the term converges in probability to zero by Cheb-
eychev’s Inequality [3] and is ignorable in the limit. Thus, since t1 and t2 are
asymptotically normal and independent for all values of n and m it follows that
d̄xy is asymptotically normal.

4.6 Two Sample Location Test
As above we assume X1, . . . , Xn are an IID random sample with common mean
µx and Y1, . . . , Ym are an IID random sample with common mean µy. We also
have the one and two sample mean squared Euclidean distances:

d̄xx =
2

n(n− 1)

∑
i<j

|Xi − Xj|2 (87)

d̄yy =
2

m(m− 1)

∑
i<j

|Yi − Yj|2 (88)

d̄xy =
1

nm

∑
i,j

|Xi − Yj|2 (89)

A reasonable location test statistic is given by:

∆l = d̄xy − d̄xx + d̄yy

2
(90)
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which has expected value |µx − µy|2.
It follows from the identities derived above in 71 and 72 and 77 to 80 that ∆l

is the sum of the six following terms:

2(µx − µy)
T((X̄− µx)− (Ȳ − µy)) (91)
−2(X̄− µx)

T(Ȳ − µy) (92)
|µx − µy|2 (93)

2

n(n− 1)

∑
i<j

(Xi − µx)
T(Xj − µx) (94)

2

m(m− 1)

∑
i<j

(Yi − µy)
T(Yj − µy) (95)

A little algebra shows that term 94 is equivalent to:

1

n(n− 1)

(∑
i,j

(Xi − µx)
T(Xi − µx)−

∑
i

|Xi − µx|2
)

(96)

or:
n

(n− 1)
|X̄− µx|2 − 1

n(n− 1)

∑
i

|Xi − µx|2 (97)

Since a similar result holds for term 95 and since µx and µy are just place
holders and can be replaced by X̄ and Ȳ we have:

∆l = |X̄− Ȳ|2 − 1

n(n− 1)

∑
i

|Xi − X̄|2 − 1

m(m− 1)

∑
i

|Yi − Ȳ|2 (98)

The second two terms in Equation 98 converge to zero in probability so the
asymptotic distribution of ∆l is that of |X̄− Ȳ|2. For example, for univariate
data under the location null hypothesis, H0 : µx = µy, |X̄− Ȳ|2 correctly scaled
is asymptotically distributed as χ2 with one degree of freedom. On the other hand
if X and Y are high dimensional with IID components, |X̄− Ȳ|2 is asymptotically
normal. Thus, the asymptotic distribution of ∆l is not independent of the structure
of the underlying data.
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4.7 Two Sample Variance Test
We have X1, . . . , Xn and Y1, . . . , Ym IID random samples from different distribu-
tions. We also have the one sample mean squared Euclidean distances:

d̄xx =
2

n(n− 1)

∑
i<j

|Xi − Xj|2 (99)

d̄yy =
2

m(m− 1)

∑
i<j

|Yi − Yj|2 (100)

(101)

A reasonable variance test statistic is given by:

∆v = d̄xx − d̄yy (102)

which has expected value 2(Tr[Σx]− Tr[Σy]). Since d̄xx and d̄yy are independent
and asymptotically normal, ∆v is also asymptotically normal. Its variance can be
computed from the one sample variance estimators derived above.

4.8 Two Sample Equivalance Test
As above we have two groups of vectors, Xi, . . . , Xn and Yi, . . . , Ym. Suppose
that the Xi, . . . , Xn are drawn from a reference group and we wish to test whether
the Yi, . . . , Ym are equivalent to them in mean and variability. We have the one
and two sample mean squared Euclidean distances:

d̄xx =
2

n(n− 1)

∑
i<j

|Xi − Xj|2 (103)

d̄xy =
1

nm

∑
i,j

|Xi − Yj|2 (104)

and a reasonable equivalence test statistic is given by:

∆e = d̄xy − d̄xx (105)

which has expected value |µx − µy|2 + (Tr[Σy]− Tr[Σx]).
Note that ∆e should be small if each Yi is drawn from the same distribution as

each Xi but should be large if the two distributions differ in mean or the Yi have
greater variability.
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Adding and subtracting means and doing a little algebra reduces ∆e to a sum
of the five terms:

t1 =
1

m

∑
j

(|Yj − µy|2 − 2(Yj − µy)
T(µx − µy)

)
(106)

t2 =
1

n

∑
i

(−|Xi − µx|2 + 2(Xi − µx)
T(µx − µy)

)
(107)

t3 = − 1

nm

∑
i,j

2(Xi − µx)
T(Yj − µy) (108)

t4 =
1

n(n− 1)

∑
i<j

4(Xi − µx)
T(Xj − µx) (109)

t5 =
1

nm

∑
i,j

|µx − µy|2 (110)

Since terms 106 and 107 are independent means of IID terms and are thus asymp-
totically normal and independent, and since terms 108 and 109 converge to zero
in probability at a rate proportional to 1/nm, we expect ∆e to be asymptotically
normal. In fact, a formal proof, similar to the proof given in Section 4.5 for the
asymptotic normality of the two sample mean distance, shows this to be the case.

Note that under the hypothesis of equal variability we have

E[∆e] = |µx − µy|2 (111)

so that under equal variability ∆e is also a reasonable choice of test statistic for
testing a location difference.

4.9 Simulation
A simulation was run in R to see if the asymptotic location, variability, and equiva-
lence tests have normal distributions under the global null hypothesis. In addition
the p-values of the asymptotic tests were compared to those of the permutation
test.

Figures 1, 2, and 3 are based on two groups of twenty simulated “microar-
rays” each having only two “genes”. Thus each microarray is simply a pair of in-
dependent N[0, 1] random variables. The distance measure used is mean squared
Euclidean distance and 200 repetitions were run.
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The upper panel is a normal QQ-plot of the asymptotic test z-statistic which
should follow a 45 degree line if the sampling distribution is approximately N[0, 1]
as hypothesized.

The bottom panel plots the permutation test p-value versus the asymptotic test
p-value together with a 45 degree reference line.

As can be seen the location test does not appear asymptotically normal, as
expected, while the variability and equivalence tests perform very well and give
p-values nearly equivalent to the permutation test.
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Figure 1: Location Test

−3 −2 −1 0 1 2 3

−1
0

1
2

3
4

5

Location Test Under the Global Null Hypothesis

Normal Quantiles

Qu
an

tile
s o

f Z
−S

ta
tis

tic

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Asymptotic P−Value

Pe
rm

ut
at

ion
 P

−V
alu

e



4 ADDITIVE ERRORS AND EUCLIDEAN DISTANCE 23

Figure 2: Variability Test
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Figure 3: Equivalence Test
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5 Speculative Alternatives to the Location Test
We note that the above proposed location test is not guaranteed to be asymptot-
ically normal under squared Euclidean distance. Therefore we wish to consider
several possible alternative ways of testing for a location difference.

5.1 “Magic Coordinate” Test
The idea of the magic coordinate test is to project all the data onto a direction of
maximal separation and then simply do a univariate test on this line. The direction
will need to be found by some algorithm such as support vector machines. We
examine here how this might work out.

We have as usual two groups of vectors, Xi, . . . , Xn and Yi, . . . , Ym, and a
specified direction given by a unit vector C. Choose any point, say B, as a base
point and project all the data onto the line through B in the C direction. For the
vector Xi the signed length from B in the C direction is given by:

L(Xi) = CT(Xi − B) (112)

thus the average of L(Xi) over Xi, . . . , Xn is:

1

n

∑
i

L(Xi) =
1

n

∑
i

CT(Xi − B) (113)

= CT(X̄− B) (114)

Note that 113 is an average of IID terms so that 114 is asymptotically normal.
Further it has sample variance:

Vx =
1

n(n− 1)

∑
i

(
CT(Xi − X̄)

)2
(115)

and since similar results hold for Yi, . . . , Ym we have under the null hypothesis,
H0 : µx = µy, that:

∆L =
CT(X̄− Ȳ)√

Vx + Vy

(116)

is an asymptotically N[0, 1] test for a location difference in the C direction.
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Lets look more closely at the variance estimator. Letting the subscripts j and
k represent the jth and kth components of each vector we have:

Vx =
1

n(n− 1)

∑
i

(∑
j

Cj(Xij − X̄j)

)2

(117)

=
1

n(n− 1)

∑
i

∑
j

∑

k

Cj(Xij − X̄j)Ck(Xik − X̄k) (118)

=
∑

j

∑

k

CjCk

∑
i(Xij − X̄j)(Xik − X̄k)

n(n− 1)
(119)

=
∑

j

∑

k

CjCkĉov(X̄j, X̄k) (120)

= CTΣ̂X̄C (121)

where Σ̂X̄ is the sample covariance matrix of X̄. Thus Vx is the well known sample
estimator of the variance of CTX̄.

Since the direction C has been chosen to maximally separate the two groups
the size of the test based ∆L is smaller than the nominal size of the normal Z-
test so that the test is anti-conservative. Second the maximal value of CT(X̄− Ȳ)
occurs when C is parallel to (X̄− Ȳ) but the maximal value of ∆L depends on
(X̄− Ȳ), Σ̂X̄, and Σ̂Ȳ.

5.2 Split Sample Location Test
If, as was shown above, the average within group and between group mean squared
Euclidean distance is indeed asymptotically normal, then an asymptotically nor-
mal location test can be constructed by splitting each group of microarrays in half
and using one half to estimate the between group mean distance and the other to
estimate the within group mean distance. Since these estimates are independent
and asymptotically normal any linear combination will also be asymptotically nor-
mal.

So suppose we have two groups each with - for notational convenience - an
even number of microarrays Xi, . . . , X2n and Yi, . . . , Y2m. We can randomly
split them into two groups each of the form Xai, . . . , Xan and Xbi, . . . , Xbn and
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Yai, . . . , Yam and Ybi, . . . , Ybm. Define the location test statistic:

∆l =
1

nm

∑
i,j

d(Xai, Yaj)− 1

2

(
2

n(n− 1)

∑
i<j

d(Xbi, Xbj) +
2

m(m− 1)

∑
i<j

d(Ybi, Ybj)

)

(122)
The statistic ∆l is asymptotically normal, has expected value |µx − µy|2, and

we know how to estimate its variance from work done above. It is necessary, of
course, to prove that the random partition into half groups minimizes the variance
of ∆l over all possible partitions of each group into two sub-groups. Also ∆l has
the obvious problem that a different random partition into half groups will yield a
slightly different p-value or confidence interval.

We performed a simulation in R to see if the split sample location test has a
normal distribution under the global null hypothesis. To keep the coding simple
we did not scale ∆l by its estimated standard error.

Figure 4 is a normal QQ-plot of ∆l based on two groups of twenty simulated
“microarrays” each having only two “genes”. Thus each microarray is simply a
pair of independent N[0, 1] random variables. The distance measure used is mean
squared Euclidean distance and 200 repetitions were run.

The figure should follow a straight line if the sampling distribution is approx-
imately normal as hypothesized so that, as can be seen, the distribution of ∆l is
nearly normal.



5 SPECULATIVE ALTERNATIVES TO THE LOCATION TEST 28

Figure 4: Split Sample Location Test
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As a way to finesse the arbitrary splitting we considered the possibility of av-
eraging the test statistic over several splits and then comparing the average (suit-
ably scaled) to the percentiles of the standard normal despite the fact that we do
not know the sampling distribution of the average. The argument for such a test
follows from the assumption that the distribution of the sample average of identi-
cally distributed (but not necessarily independent) random variables must narrow
so that (with some thought) such a test will in fact be conservative without sac-
rificing power under alternatives that would have “reasonable” power under the
split sample test.

In fact this premise turns out to be false as there is a way to construct a simple
counter example for a pair of identically distributed discrete random variables.
The basic idea is to construct correlated random variables with most of the mass
in the tails.

We present an example for the identically distributed random variables X1 and
X2 which take the values {1, 2, 3, 4, 5, 6, 7, 8}. As will be evident this construction
can easily be extended to discrete random variables taking an arbitrarily large
number of values. Table 3 shows the joint distribution of X1 and X2 although it
has not been normalized to have total mass equal to one so that the pattern in how
the probability mass is distributed is evident.

Letting X̄ = (X1 + X2)/2 it can be seen from the joint distribution that:

P[X̄ ≥ 8] < P[X1 ≥ 8] (123)

but:
P[X̄ ≥ 7] > P[X1 ≥ 7] (124)

and:
P[X̄ ≥ 6] > P[X1 ≥ 6] (125)

and:
P[X̄ ≥ 5] = P[X1 ≥ 5] (126)

and a symmetrical result holds for P[X̄ ≤ 1], P[X̄ ≤ 2], P[X̄ ≤ 3], and P[X̄ ≤ 4]
so that except for the extreme values 1 and 8 the distribution of X̄ is essentially
broader than the distribution of X1.
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Table 3: Joint Probability Distribution of X1 and X2
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6 The Permutation Test

6.1 Introduction
This section describes the permutation test in the simplest case of two independent
groups and squared Euclidean distance.

Consider an experiment comparing two levels of some experimental factor that
might influence apparent gene expression. The gene expression values, or some
function of the gene expression values which measures the biological signal for
each gene, can be represented by two groups of column vectors of signal values.
We will represent these column vectors by X1,1, . . . , X1,N1 and X2,1, . . . , X2,N2 ,
for factor levels 1 and 2 respectively where N1 and N2 are the number of arrays in
groups 1 and 2 respectively. For simplicity we will refer to these vectors of signal
values as microarrays. Let D[Xi,j, Xk,l] be the dissimilarity or distance between
two microarrays.

Inference concerning the variability and location of groups 1 and 2 can be
based on the three means:

D̄11 =
2

N1(N1 − 1)

∑
i<j≤N1

D[X1,i, X1,j] (127)

D̄22 =
2

N2(N2 − 1)

∑
i<j≤N2

D[X2,i, X2,j] (128)

D̄12 =
1

N1N2

∑
i≤N1,j≤N2

D[X1,i, X2,j] (129)

Where

1. D̄11 is the mean distance between microarrays within group 1.

2. D̄22 is the mean distance between microarrays within group 2.

3. D̄12 is the mean distance between microarrays between groups 1 and 2.

6.2 Additive Errors and Squared Euclidean Distance
In this section we derive the expected value of D̄11, D̄22, and D̄12 assuming a
completely randomized design, an additive error model, and squared Euclidean



6 THE PERMUTATION TEST 32

distance. Under these assumptions we have:

X1,i = µ1 + ε1,i (130)
X2,i = µ2 + ε2,i (131)

where µ1 and µ2 are the respective mean vectors of the microarrays in groups 1
and 2 and ε1,i and ε2,i are random error vectors with expected value 0 and vari-
ance covariance matrices Σ1 and Σ2 respectively. The errors are assumed to be
independent across microarrays.

The squared Euclidean distance between any two microarrays, Xi,j and Xk,lis

|Xi,j − Xk,l|2 = (Xi,j − Xk,l)
T(Xi,j − Xk,l) (132)

and

E[D̄11] = 2Tr[Σ1] (133)
E[D̄22] = 2Tr[Σ2] (134)
E[D̄12] = |µ1 − µ2|2 + Tr[Σ1] + Tr[Σ2] (135)

where Tr[] is the trace operator which gives the sum of the diagonal elements of a
matrix.

We can now define test statistics to compare the variability and location of
groups 1 and 2. To compare variability let:

∆v = D̄11 − D̄22 (136)

and to compare location let:

∆l = D̄12 − D̄11 + D̄22

2
(137)

These test statistics have expected values:

E[∆v] = 2(Tr[Σ1]− Tr[Σ2]) (138)

and:
E[∆l] = |µ1 − µ2|2 (139)

Inference concerning the magnitude of ∆v and ∆l can be made using a per-
mutation test. Each permutation consists of assigning N1 microarrays to group
1 and the remaining N2 to group 2. Note that for each permutation the pairwise
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distances are simply re-indexed, they do not have to be recalculated. Only the
values of D̄11, D̄22, and D̄12 and ∆v and ∆l have to be recalculated based on the
re-indexing.

Let ∆obs
v and ∆obs

l be the observed values of ∆v and ∆l and let ∆∗
v and ∆∗

l be
the values from a permutation. If there are a total of B permutations, and assuming
∆obs

v > 0, then

pv =
Number[∆∗

v ≥ ∆obs
v ]

B
(140)

is a one-sided p-value [4] for rejecting the null hypothesis that Tr[Σ1] = Tr[Σ2].
If ∆obs

v < 0 then the inequality in Equation 140 is simply reversed. Similarly

pl =
Number[∆∗

l ≥ ∆obs
l ]

B
(141)

is a one-sided p-value for rejecting the null hypothesis that µ1 = µ2.
Sometimes investigators design an experiment to compare a new method to a

proven “gold standard”. In such a case interest centers on showing that the new
method is equivalent to the gold standard. To be equivalent it should not differ in
mean and not exhibit greater variability. Assuming that the microarrays in group
1 were prepared using the gold standard, a summary statistic which can be used
to reject the null hypothesis of equivalence is given by:

∆e = D̄12 − D̄11 (142)

If this statistic is large, then group 2 either has a different mean or more var iability
than group 1. This can easily be seen from its expected value under mean squared
Euclidean distance:

E[∆e] = |µ1 − µ2|2 + (Tr[Σ2]− Tr[Σ1]) (143)

This also makes intuitive sense. If the two methods are equivalent then the dis-
tance between the microarrays in groups 1 and 2 should not be any greater than
the distance between the microarrays within group 1. Inference concerning the
magnitude of ∆e can be made using a permutation test exactly as for ∆l and ∆v.

It should be noted that the statistics ∆v, ∆l, and ∆e are all special cases of
Mantel’s U statistic [5] and ∆l is similar to a special case of the MRPP statistic [6].
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