A Parallel Computing System for R

By Peter Lazar and Dr David Schoenfeld

Department of Biostatistics,

Mass General Hospital, Boston MA
I. Abstract:

With the advent of high throughput genomics and proteomics, biology and medical researchers are faced with data processing problems of a magnitude not encountered previously. Parallel computing offers an attractive option for researchers seeking to apply statistical and analytic computation to large–volume biological data. We have developed a parallel computation system Biopara. Written in R, it allows a user to easily dispatch an R computation job to multiple worker computers. We examine the challenges of designing an efficient parallel computation framework, including user interface; proper data passing and control; installation, overhead and user management issues; and fault tolerance and load balancing. We show how our parallel computation system,using R exclusively, addresses these challenges. A statistical bootstrap procedure is used to illustrate the system. Biopara is available on CRAN: http://cran.r-project.org/src/contrib/Descriptions/biopara.html

Keywords: Parallel Computation, R

Correspondence Author: Peter Lazar, plazar@partners.org , 617-724-0309 (fax 617-724-5713), 50 Staniford Street, suite 560, Boston MA 02114

II. Introduction:
With the expansion and integration of vast electronic datasets into every facet of biological research, medicine and data analysis, today’s researcher has access to overwhelming amounts of information. Statistical processing of this data or even a subset of it is a daunting task. Non-parametric methods such as simulation, bootstrap and jackknife are especially well suited to meeting these challenges but such methods are computationally intensive and involve processing large numbers of independent calculations. One solution to these problems is parallel computation: dividing of a problem into “n” smaller sub problems and distributing it to a cluster of machines for a potential “n”-fold increase in speed.

Unfortunately, not all applications are friendly to parallel and multiprocessor applications. In particular, the popular and powerful statistical package “R” is an inherently single processor application. We did not feel that the contemporary toolkits such as Paralize(See (3)), a parallel toolkit of Matlab or SNOW (See SNOW(2)), a parallel toolkit for R, fit our needs. Neither of these systems had direct control of environments or individual workers. Neither had any fault tolerance or load balancing. In response, we developed a sockets based message passing system called Biopara. Our system allows R to carry out coarsely parallel computations on a cluster of heterogeneous machines without requiring the user to perform any special programming. Biopara is an extensive wrapper system that enables data transfer, job management and intercommunication between individual R processes. This paper will address issues that arise in designing any parallel system and how such issues were dealt with while designing Biopara. In the following sections, we will discuss the primary challenges faced when designing a multi-user parallel system for data analysis.
III. Design Issues in Parallel Computation

A. User Interface:
We assume that the user is running R on a desktop computer and that the cluster is exists on a network where the biopara system is installed. The user interface is made up of one function call with only two parameters that specify the specifics of the job and two other minor housekeeping parameters. A user call to Biopara is called a job and the individual programs being executed on each computer are referred to as tasks. One of the parameters is a text string that contains a single R expression or list of R expressions. In the case of a single expression, this expression is executed the number of times specified by a second parameter. The result of each execution is returned as an object in a list that is the output of the function call. In the case of a list of expressions the count parameter is ignored, each expression is executed separately and the result of each execution is returned. In either case parallel processing is utilized to evaluate the expressions with the degree of simultaneity depending on the number of nodes in the cluster.

For instance, to perform a bootstrap calculation the user would specify the number of bootstraps to be performed and a string containing/defining the R function that performs a single bootstrap calculation. The following would call biopara in order to execute usrfn 90 times across the cluster, dividing the execution automatically across the available machines:

output<-biopara(list(‘servname’,port),list(‘pcname’,pcport),90,list(’usrfn(x,,)’))
Usrfn is a user written R function that runs the bootstrap calculation. The output is a list of 90 native R objects (outputs of usrfn). Each is a statistic calculated on a different bootstrap sample. Svnm and port are the hostname and port of the server running the biopara master code while pcname and pcport are the hostname and port of the local machine. For the call:

out<-biopara(list(‘svnm’,port),list(‘pcname’,pcport),1,list(’usrfn1(x,,)’,’usrfn2(x,,)’))

, each user function can be different and the output list contains an element for each object in the input list; the number-of-runs specifier is ignored. This user interface is easy to use and, due to the extensibility of the R language, is adequate for most coarsely parallel statistical computing applications.

B. How the System Works:

The system consists of a client process , a master process and multiple worker R processes, each running concurrently on computers within the cluster. Communication is handled by R “socketconnections”. The master “listens” for jobs from the client and the workers “listen” for tasks from the master.

The client process creates and packages the job, (multiple R functions and data), as a text string using the “dump” function. This text is sent to the master. The master parses this text string, breaks it up into multiple worker tasks, and sends the tasks one at a time to the idle workers, again transmitting the task as text. The worker receives a text string for a task, converts it back into R objects (using eval(parse(text)) and performs the computation. The output object is converted back into text and returned to the master. As each worker finishes its task it is handed a new one. This accomplishes load balancing quite well as it favors faster machines.

When all tasks are finished, the master gathers all the output objects into a list and sends a text representation back to the client. The client parses this text string into a list of R native objects, the output of the biopara client call.

 C. Installation and Operational Environment and Overhead Management
We wanted to avoid third party applications such as an MPI framework because their installation may be difficult for the user who may not be managing the cluster. We found that R has an internal sockets implementation that is quite suitable for message passing. It also contains a function “dump” that creates a text representation of any R object. By using these methods instead of an external environment or utility, we have made installation straightforward: the entire system consists of an R function defined by a single file that is invoked on the master, client and workers.

Sockets communication allows machines to be brought into the parallel network from anywhere on the internet. Using the internal methods of the R language has the added bonus that Biopara can be run by any machine that can run R. One can even mix operating systems when bringing workers into a network. Using the workers internal methods for simple socket communication has given our system simplicity in setup and use, cross platform ability, availability of offsite machines and ease of system modification.

The overhead in using a parallel system is the time not used actually performing the computation. Many of the pvm/mpi based systems rely on launching and tearing down R sessions, presenting a 3-5 second delay per task. We avoid this set-up delay by keeping the master and workers alive and inserting a blocking on a socket read (very efficient: 1% cpu usage idle).

D. Distribution and Handling of Data
In order to enable practical use of a parallel system, data management across the cluster is vital. Unless a call receives all of its input parameters through a function call using an R standard built in function, it becomes necessary to export data and function definitions to a worker for processing. In that case, the environment on each worker may be subject to side effects after a run: another user can acquire the system with the potential for overlapping variable names, altered data values and incorrect results.

We added a set of reasonably automated commands that allow a user to define and erase the environment visible to his worker nodes across the cluster. The user launches a command “setenv”, pulling the user’s desktop environment into the biopara client function and then transmitting it to the biopara master and all the workers. Since all users must have a unique username on any system, this avoids all environment collisions. All tasks are also stamped with the username and a worker will load the appropriate user’s environment from its library before evaluating any commands. A user’s environment will persist even if the system is shut down and restarted.

E. Fault Tolerance and Load Balancing
Any parallel system with multiple machines has too much hardware and too many network connections and competing processes to rely on a good faith fault tolerance scheme, even assuming that each worker completes its task in an identical fashion. We need failure management and recovery to save long computations from such individual host failures. We also need load balancing to favor faster workers and speed up the overall job.

We assume that the fastest functioning worker will be the first to return results. When the first task returns, we multiply elapsed time by a leniency factor to get an upper bound on the maximum allowable elapsed time. If any task exceeds the previously calculated threshold, the master cancels that task in its internal tables so that it no longer checks that node for any further output and reroutes the task. By favoring nodes that return first, we establish inherent load balancing and sending a larger share of the work to the fastest contributing cluster members.

IV. Results
The Biopara system is currently deployed on a ROCKS 3.0 cluster consisting of 22 Dell 1650’s with 2 gigs of RAM per unit, a gigabit ethernet backbone and a remote Windows workstation acting as the client. With a homogenous cluster of machines, we see an n-fold speedup proportional to n, the number of worker machines present. Overhead for 500 instant return calls (“1+1”) is 5.4 seconds with 22 nodes (48.3 sec for 5000 calls). For computationally intensive tasks, speedup is almost n (n being the number of workers present).

Optimal job division depends on cluster load and worker speed. In optimal conditions one would split the job into as many tasks as one has workers to minimizes communications. The job will only be as fast as the slowest worker. However, if we create more subdivisions in the overall job, the slow worker will have a reduced impact. For example, to calculate the bootstrap standard deviation of a mean of 1000 samples with 20,000 resamples using a 20 node cluster, one could invoke the following code, which would break the job down into 100 tasks, with each worker doing an average of five of them.
data=rnorm(1000);

biopara(list("myserv",1234),list("mypc",4567),list("data",”bootmean”),list("setenv"));

out<-biopara(list("myserv",1234),list("mypc",4567),100,list(“bootmean(data,200)”));
The code would that follows would be more efficient but it would have problems in a highly heterogenous environment with competing users and/or processes:

out<-biopara(list("myserv",39000),list("mypc",40000),20,list(“bootmean(data,1000)”));
The job with 100 tasks ran in 4.2 seconds while the job with one task per worker took 3.3 seconds to complete. This compares to 17.54 seconds if we did the job in one task (without parallelism) or 22.8 seconds with 100 tasks. In a homogenous network the best speed is to divide the job into as many tasks as there are workers but using five times as many tasks does not cause an excessive loss of efficiency. The true power of parallelism shows itself when jobs are very large. For instance with 50,000 resamples the job with one task took 213 seconds, a time that was nearly 50 times as great as the 4.26 seconds it took when the job was broken into 20 tasks. The fact that the speedup was more than 20 times is probably due to inefficiencies in R or page-faults due to the excessive size of the computation.

 We hope this parallel utility serves the R community well for years to come. Copies are available at http://cran.r-project.org/src/contrib/Descriptions/biopara.html
VI. References
[1] Luke Tierney, A. J. Rossini and Na Li, Simple Parallel Statistical Computing in R
2003, http://www.stat.uiowa.edu/~luke/talks/uiowa03.pdf, University of Washington,
[2]Luke Tierney, A. J. Rossini, Na Li, H. Sevcikova, SNOW Parallel R package, 2004, http://cran.r-project.org/doc/packages/snow.pdf
[3] Ron Choy , Alan Edelman , Parallel Matlab: Doing it Right, Computer Science AI Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, November 15, 2003
[4] Thomas Abrahamsson. Paralize:ftp://ftp.mathworks.com/pub/contrib/v5/tools/paralize/ , 1998.

[5] DCT package from Mathworks. http://www.mathworks.com/products/distribtb/ , 2003.

[6] J. Zollweg. Cornell multitask toolbox for Matlab http://www.tc.cornell.edu/Services/Software/CMTM/ , 2001

